Tumorzellen können ihr äußeres Erscheinungsbild verändern, wenn im Rahmen der Behandlung eine entzündliche Reaktion auftritt. T-Zellen sind dann nicht mehr in der Lage, diese als schädlich zu erkennen. Ein mathematisches Modell macht diesen Effekt nun analysierbar.
Eines der größten Probleme im Kampf gegen Krebs ist die hohe Widerstandsfähigkeit der Tumoren. Häufig zeigen sich bei einer medizinischen Behandlung zunächst erste Erfolge, die dann aber durch einen Rückfall zunichte gemacht werden. Manchmal schlägt die Behandlung bei einigen der Krebszellen überhaupt nicht an. Andere Zellen entwickeln erst im Laufe der Therapie eine Resistenz. Die T-Zellen können bösartige Tumoren bekämpfen und werden gezielt eingesetzt oder aktiviert, um Krebserkrankungen zu behandeln. Die Forschungsgruppen von Prof. Dr. Thomas Tüting und Prof. Dr. Michael Hölzel vom Universitätsklinikum Bonn haben in ihren Experimenten zum Hautkrebs nachgewiesen, dass Tumorzellen ihr äußeres Erscheinungsbild verändern können, wenn im Rahmen der Behandlung eine entzündliche Reaktion auftritt. In der Folge erkennen die T-Zellen diese nicht mehr als schädlich und der Krebs kann sich ungehindert weiter ausbreiten. Ein neues Modell von Mathematikern und Medizinern der Exzellenzcluster Hausdorff Center for Mathematics und ImmunoSensation der Universität Bonn beschreibt diesen Effekt nun mathematisch und macht ihn so analysierbar. Künftig könnte das Modell unter anderem dazu verwendet werden, verschiedene Therapieansätze am Computer zu simulieren und damit optimale Behandlungsstrategien zu entwickeln.
„Die ersten Ergebnisse zeigen, dass eine Behandlung mit mehreren Arten von Immunzellen tatsächlich ein vielversprechender Ansatz sein könnte“, sagt der leitende Wissenschaftler dieser Arbeit, Prof. Dr. Anton Bovier vom Hausdorff Center for Mathematics. Den Untersuchungen liegt ein stochastisches Modell aus der adaptiven Dynamik zugrunde, das die Mathematiker weiterentwickelt haben, um es zum Beispiel in der Krebsforschung anwenden zu können. „Tumore sind nichts anderes als Populationen von Krebszellen, die auf sehr komplexe Art miteinander interagieren und auf ihre Umwelt in Form des Körpers und seines Immunsystems reagieren“, erklärt Prof. Bovier.
In numerischen Simulationen der Bonner Forscher war der langfristige Erfolg einer Therapie auch bei gleichen Ausgangsbedingungen von zufälligen Schwankungen in den Populationsgrößen von Krebs- und Immunzellen abhängig. Ob dieser Effekt auch in der Realität eintritt und nicht nur am Computer, muss erst noch experimentell untersucht werden. Die virtuelle Forschung der Exzellenzcluster hat außerdem gezeigt, dass eine Behandlung unter bestimmten Voraussetzungen sogar die Wahrscheinlichkeit erhöhen kann, dass Krebszellen mutieren. In diesen Fällen beschleunigte eine Therapie in der Simulation die Entwicklung hin zu aggressiveren Krebsvarianten. „Dieses Projekt kann sowohl Mathematiker auf mögliche Anwendungen ihrer Arbeit in einem medizinischen Kontext aufmerksam machen als auch Mediziner für den Nutzen mathematischer Methoden sensibilisieren“, fasst Prof. Hölzel von ImmunoSensation die Ergebnisse der interdisziplinären Arbeit zusammen. „Wir werden auf jeden Fall auch weiterhin gemeinsam im Kampf gegen den Krebs forschen.“ Damit das Modell in der Praxis eingesetzt werden kann, müssen jetzt noch weitere experimentelle Daten erhoben werden. Originalpublikation: A stochastic model for immunotherapy of cancer. Scientific Reports Martina Baar et al.; Scientific Reports, doi: 10.1038/srep24169; 2016