Bei einem Tango kommt es darauf an, dass beide Partner exakt aufeinander eingespielt sein müssen, um die Bewegungen optimal umzusetzen. Ähnlich ist es bei einem neu entwickelten Katalysator. Er wandelt in zwei Stufen Naturstoffe in erwünschte Produkte um.
Kaum ein chemisches Herstellungsverfahren kommt ohne Katalysatoren aus: Sie bringen überhaupt erst chemische Reaktionen in Gang, beschleunigen sie oder lenken sie in eine bestimmte Richtung. Der Energie- und Ressourcenaufwand in der chemischen Produktion kann mit Katalysatoren häufig entscheidend verringert werden. „Allerdings erfordern viele Katalysatoren teure Edelmetalle oder giftige Substanzen“, sagt Prof. Dr. Andreas Gansäuer vom Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn. Sein Team hat mit Wissenschaftlern vom Mulliken Center for Theoretical Chemistry der Universität Bonn und der Universität Granada (Spanien) einen neuartigen Katalysator entwickelt, der zum Beispiel für die Erzeugung von pharmazeutischen Produkten von Bedeutung sein könnte.
„Der Katalysator ist leicht herzustellen und besteht aus einer Titan-Verbindung, die eine Amidgruppe enthält, wie sie zum Beispiel in vielen Proteinen vorkommt“, sagt Prof. Gansäuer. Der Katalysator funktioniert in zwei Schritten: Zuerst werden Radikale hergestellt, die über ein freies Elektron verfügen und deshalb sehr reaktionsfreudig sind. Die Radikale können in viele Produkte – Alkohole, Lactone sowie Hetero-und Carbozyklen – und so zu neuen Naturstoffderivaten mit maßgeschneiderten Eigenschaften umgewandelt werden. Im zweiten Schritt werden die Radikale nach getaner Arbeit durch ein Wasserstoffatom weggefangen. Mit dem neuartigen Katalysatorsystem lassen sich zum Beispiel Steroide, Zucker und Aminosäuren leicht modifizieren. „Das sind allesamt sehr wichtige Synthesewege zum Beispiel für Anwendungen in der pharmazeutischen Industrie“, erläutert Prof. Gansäuer.
Der Katalysator funktioniert nur, wenn die Herstellung und das Wiederwegfangen der Radikale präzise koordiniert sind. „Die Kopplung der Katalysezyklen erinnert an einen Tango, bei dem auch beide Tanzpartner genau aufeinander eingespielt sein müssen“, schildert der Chemiker der Universität Bonn. Das Forscherteam hat es mit seiner Entwicklung geschafft, dass der neuartige Katalysator genau diese Herausforderung meistert. „Das bifunktionelle katalytische System eröffnet vollkommen neue Perspektiven für industrielle und pharmazeutische Anwendungen“, sagt Prof. Gansäuer. Originalpublikation: Amid-substituierte Titanocene für die H-Atom-Transfer-Katalyse Angewandte Chemie, doi: 10.1002/ange.201509548; 2015