Ein Halbleiter, der normalerweise in Solarzellen zum Einsatz kommt, reagiert auch auf Röntgenstrahlen empfindlich. Und das genauso gut wie Materialien, die bislang verwendet werden. Die Herstellung ist einfacher und günstiger als bisher und auch die Anwendungsbereiche erweitern sich.
Während Röntgenbilder früher – und zum Teil auch heute noch – mit fotografischen Filmen aufgenommen wurden, gibt es mittlerweile auch digitale Röntgenkameras, die jedoch immens kostspielig sind. In den Detektoren werden Halbleiter aus Silizium oder Selen in aufwändigen und komplizierten Vakuumverfahren verbaut. In der Solartechnik, bei der es wie in der Röntgentechnik grundsätzlich ebenfalls darum geht, Licht zu absorbieren, werden immer häufiger lösungsprozessierte Halbleiter eingesetzt: Sie lassen sich einfach auf Trägerschichten wie Glas oder Kunststoff aufdrucken und helfen damit, Produktionskosten erheblich einzusparen. Um herauszufinden, ob diese Halbleiter, die in Solarzellen auf Lichtwellen reagieren, auch für Röntgenbilder geeignet sein könnten bestrahlten die Wissenschaftler eine Dünnschicht-Solarzelle, bestehend aus einem Halbleiter aus einem metall-organischen Perowskiten mit Röntgenwellen. Dieser Halbleiter hat unter anderem einen hohen Anteil Blei. Das Element absorbiert – im Gegensatz zu leichteren Elementen oder biologischen Substanzen – Röntgenstrahlung vergleichsweise gut. Der Halbleiter eignet sich prinzipiell sehr gut, um die Strahlen zu detektieren. Jedoch sind die Solarzellen selbst viel zu dünn, um als Detektoren zu dienen: Sie sind nur wenige Mikrometer dick, absorbieren dadurch zu wenig Röntgenstrahlung – und erzeugen daher keine ausreichend scharfen und detailreichen Bilder. Daraufhin wurden Detektoren hergestellt, bei denen die Halbleiterschicht etwa 300mal so dick war wie in den Solarzellen. Die Materialien sprühten die Forscher mit einer Air-brush-Technik auf. Damit erreichten sie eine homogene Beschichtung mit ausreichenden elektrischen Eigenschaften, um Röntgenstrahlung zu detektieren.
Mit den Detektoren, die auf den Halbleitern aus den Solarzellen basierten, erzielten sie genauso gute Ergebnisse wie mit Detektoren aus Festkörper-Halbleitern, für deren Herstellung aufwendige Vakuum-Beschichtungsanlagen nötig sind. Diese könnten in Zukunft möglicherweise auch auf flexible Kunststoffe wie Kapton oder PET aufgesprüht werden, was den Einsatzbereich in der Material- und in der medizinischen Analytik immens erweitern würde. Die Air-Brush-Technik könnte sich vor allem für großflächige Detektor-Arrays eignen, wie sie beispielsweise in Röntgenkameras eingesetzt werden, die in der Medizintechnik für Koronarangioplastien, oder in der Materialprüfung angewendet werden. Originalpublikationen: Detection of X-ray photons by solution-processed lead halide perovskites Wolfgang Heiß et al.; Nature Photonics, doi: 10.1038/nphoton.2015.82; 2015