Durch eine Rasterfahndung in verschiedenen Biodatenbanken stießen Neurobiologen auf das Protein CRMP1, das als „Anstandsdame“ dafür sorgt, dass sich das Protein Huntingtin (HTT) korrekt verhält, nicht falsch faltet und verklumpt.
Zielstellung des Forschungsprojekts von Prof. Erich Wanker vom Max-Delbrück-Centrum (MDC) und seinen Mitarbeitern war, Proteine zu finden, die mit dem Protein Huntingtin (HTT) wechselwirken und verhindern, dass es sich falsch faltet, verklumpt, Nervenzellen in ihrer Funktion beeinträchtigt und vergiftet. „Aber wie können wir aus den verschiedenen Gen- und Proteindatenbanken brauchbare Informationen herausfischen und unter den tausenden von Proteinen und [...] Protein-Protein-Wechselwirkungen diejenigen herausfiltern, die mit dem mutierten Protein HTT interagieren und vor allem mit dem überlangen Glutaminabschnitt“, diese Frage stand am Anfang der Überlegungen. Bei einer Suchmaschine gibt man einen bestimmten Begriff ein und das System spukt dazu unzählige Daten aus. Aber im Fall der MDC-Forscher ging das nicht, wollten sie nicht in der Datenflut aus den verschiedenen Biodatenbanken ertrinken. Da kam die Idee der Rasterfahndung auf, bei der Informationen aus verschiedenen Bereichen miteinander, in einem abgestuften Verfahren verknüpft werden. Um ihr Untersuchungsgebiet zu begrenzen, machten sich Dr. Martin Stroedicke, Dr. Yacine Bounab, Dr. Gautam Chaurasia, Dr. Matthias Futschik und Prof. Wanker die bisher in der Forschung gewonnenen Erkenntnisse über Chorea Huntington zunutze. Bei dieser Erkrankung sind hauptsächlich solche Hirnregionen betroffen, die mit Motorik sowie Stimmungen und Gefühlen zu tun haben. Vor allem eine Region, der Nucleus caudatus (Schwanzkern), ist bei Chorea Huntington massiv betroffen und von ihr gehen die meisten und schwersten Bewegungsstörungen aus.
Die Überlegung war dann, zuerst ein Proteinnetzwerk um das Protein HTT herum aufzubauen, um dessen direkte und indirekte „Kooperationspartner“ zu identifizieren. Dazu durchkämmten die MDC-Forscher bereits veröffentlichte Gen- und Proteindaten der in Frage kommenden Hirnregionen und zwar sowohl von Huntington-Patienten als auch von gesunden Kontrollgruppen. Dabei identifizierten sie 1.319 Proteinwechselwirkungen und entdeckten darunter über 500 Proteine, die direkt oder indirekt mit dem Protein HTT interagieren. In einem zweiten Schritt suchten sie nach HTT-Interaktionspartnern in gesunden Gehirnen und in anderem Körpergewebe, um nur die Proteine herauszufiltern, die für das Gehirn relevant sind. Dann engten sie die Suche im dritten Schritt auf die bei Chorea Huntington am stärksten betroffene Schwanzkern-Region ein. Sie verglichen dazu die Daten von 38 Chorea Huntington-Patienten mit Daten von 32 Gesunden. Dabei stießen sie auf 13 Proteine, die mit dem HTT-Protein direkt oder indirekt wechselwirken. Auffällig dabei: bei Chorea Huntington-Patienten sind diese 13 Proteine in geringeren Mengen vorhanden als bei der Kontrollgruppe.
Im dritten Schritt gelang es den MDC-Forschern unter diesen 13 Eiweißen ein Protein herauszufiltern, das direkt auf die überlange Glutaminkette des HTT-Proteins zielt. Dieses Protein, kurz CRMP1 genannt (collapsin response mediator protein 1), spielt eine zentrale Rolle bei der Entwicklung von Nervenzellen und ihrer Kommunikation. An Hand der Daten konnten die Forscher sehen, dass auch dieses Schutzprotein CRMP1 bei Chorea Huntington-Patienten in zu geringen Mengen vorkommt.
Ihre beim Filtern der Datenbanken gewonnenen Erkenntnisse überprüften die Forscher anschließend in der Zellkultur im Labor sowie mit transgenen Mäusen – sie trugen zusätzlich das Gen für Chorea Huntington in ihrem Genom – und gesunden Mäusen. Dabei bestätigte sich, worauf die Befunde der Datenbanken bereits hingedeutet hatten. Und zwar, dass die Menge an CRMP1-Protein in den transgenen Tieren im Vergleich zu den gesunden Mäusen in der Tat sehr gering war. Unklar ist jedoch, weshalb das so ist. Die nächste Frage war dann, ob das Protein CRMP1 Einfluss auf das mutierte HTT-Protein hat? Da es zu wenig von diesem Protein bei Chorea Huntington gibt, kurbelten die Forscher mit einem genetischen Trick die Produktion des Proteins CRMP1 in transgenen Chorea Huntington-Taufliegen (Drosophila melanogaster) an. Kletterversuche zeigten, dass CRMP1 die Bewegungsstörungen der Tiere tatsächlich verbesserte.
Mit diesen Untersuchungen an Tieren konnten die MDC-Forscher experimentell nachweisen, dass CRMP1 in größeren Mengen die Fehlfunktion von HTT aufhebt. Es verhindert die Verklumpung von HTT und verbessert damit die Funktion von Nervenzellen bei Chorea Huntington. „Mit der molekularen Rasterfahndung haben wir eine einfache aber durchschlagende Methode entwickelt, solche Proteine zu identifizieren, die mit dem krankmachenden Protein HTT direkt wechselwirken“, erklärt Prof. Wanker. Neben diesem jetzt neu entdeckten Protein gibt es bereits andere Eiweiße, die Angriffspunkte für künftige Therapien bieten könnten und die die Forscher in ihr Netzwerk mit aufnehmen. Die Forscher hoffen, dass ihre Erkenntnisse helfen, eine Therapie gegen Chorea Huntington zu entwickeln. „Aber das wird noch viele Jahre dauern“, gibt Prof. Wanker zu bedenken. Originalpublikation: Systematic interaction network filtering identifies CRMP1 as a novel suppressor of huntingtin misfolding and neurotoxicity Martin Stroedicke et al.; Genome Research, doi: 10.1101/gr.182444.114; 2015