Ein neues Verfahren verbessert die analytische Empfindlichkeit und darstellerische Genauigkeit der bildgebenden MALDI-Massenspektrometrie deutlich. Auch die Wechselwirkung von Krankheitserregern mit dem Organismus kann so potentiell viel besser dargestellt werden.
Biomoleküle wie Eiweiße, Kohlenhydrate und Fette spielen in allen Lebensvorgängen der Natur eine wichtige Rolle. Ihr Zusammenspiel ist allerdings sehr komplex und schwer nachzuvollziehen. Eine neuartige Möglichkeit, die im Organismus stattfindenden Vorgänge sichtbar zu machen - und so beispielsweise auch Krankheitsprozesse wie Infektionen und Entzündungen besser zu verstehen - ist die Bildgebende Lasermassenspektrometrie. Wird sie mit einer Hilfssubstanz, Matrix genannt, durchgeführt, spricht man von Matrix-unterstützter Laserdesorption/Ionisation, kurz: MALDI. Die vor rund drei Jahrzehnten in Münster entwickelte und in der biomedizinischen Forschung äußerst populäre Technologie haben Forscher nun entscheidend vorangebracht: Einem Team um Prof. Klaus Dreisewerd und Dr. Jens Soltwisch von der Universität Münster ist es gelungen, die analytische Empfindlichkeit und darstellerische Genauigkeit der Technologie noch einmal deutlich zu verbessern, wie sie in der Online-Ausgabe der Fachzeitschrift Science berichten.
„Bei der bildgebenden MALDI-Technik werden Gewebeschnitte mit einem feinfokussierten Laserstrahl abgerastert und die pro bestrahltem Pixel abgetragenen und elektrisch geladenen Teilchen in einem Massenspektrometer hinsichtlich ihres ‚Gewichtes‘ analysiert“, erklärt Dreisewerd, der wie Soltwisch im Institut für Hygiene arbeitet. „Weil jedes Biomolekül eine genau definierte Masse besitzt, können Hunderte von Stoffen gleichzeitig unterschieden werden“, so der Gruppenleiter weiter. Derart ermöglicht die MALDI-Technologie, die räumliche Verteilung der einzelnen Stoffe mit einer Auflösung im Bereich eines hundertsten Millimeters sichtbar zu machen - also auf der Ebene einer einzelnen Zelle. Dreisewerd, Soltwisch und ihren Kollegen ist es nun in ihrer Studie gelungen, die ohnehin große Empfindlichkeit der Bildgebenden MALDI-Massenspektrometrie noch einmal enorm zu steigern. Visualisierung des Prinzips der bildgebenden MALDI-2-Technologie: Ein fein fokussierter erster MALDI-Laserstrahl rastert einen präparierten Gewebeschnitt ab und erzeugt einige geladene, aber in der Mehrzahl ungeladene Teilchen. Ein zweiter, zeitlich versetzter Laserpuls bestrahlt die Materialwolke und erzeugt eine Vielzahl zusätzlicher geladener Teilchen, die, in einem Massenspektrometer nach ihrem Molekulargewicht sortiert, ein Spektrum erzeugen. Aus den Intensitäten der diskreten Signale lässt sich die räumliche Verteilung aller registrierten Stoffe im Gewebe rekonstruieren. Grafik: © UKM Fotozentrale, W. Kramer
„Dafür setzen wir einen zweiten intensiven, ultravioletten Laserpuls ein, der die expandierende Teilchenwolke aus Matrix und Biomolekülen ein zweites Mal bestrahlt“, berichtet Soltwisch über die MALDI-2 genannte neue Methode. So wird eine Vielzahl zusätzlicher geladener Biomoleküle erzeugt und eine viel genauere Darstellung der Zusammensetzung der untersuchten Gewebe erreicht. Erstmals konnten die Forscher beispielsweise die Verteilung fettlöslicher Vitamine in Hirngewebe in hoher räumlicher Auflösung sichtbar machen. „Potentiell kann so auch die Wechselwirkung von Krankheitserregern mit dem Organismus viel besser dargestellt werden“, sagt Dreisewerd, der sich von MALDI-2 wichtige Impulse für die Wissenschaft erhofft: „Sowohl in der biomedizinischen Forschung als auch in der klinischen Analytik erhalten wir damit ganz neue Möglichkeiten“. Originalpublikation: Mass spectrometry imaging with laser-induced postionization Jend Soltwisch et al.; Science, doi: 10.1126/science.aaa1051; 2015