Nicht nur in Impfstoffen ist mRNA eine hilfreiche Wirksubstanz – auch die Wirksamkeit von Medikamenten könnte mit der Technik verbessert werden. Wie das geht, zeigen Forscher aus München.
mRNA als Wirksubstanz zu verwenden, ist im Prinzip eine geniale Idee: Das Molekül enthält den spezifischen Bauplan für Proteine, die dann von der Zelle synthetisiert werden. Damit kann grundsätzlich eine sehr große Bandbreite unterschiedlicher therapeutisch wirksamer Proteine bereitgestellt werden.
Im Fall des COVID-19-Impfstoffs sind das die Proteine der charakteristischen Spikes auf der Oberfläche von SARS-CoV-2, die für die Impfung eingesetzt werden. Diese werden auf der Oberfläche von Immunzellen präsentiert, woraufhin das Immunsystem des Menschen die Abwehr gegen diese körperfremden Eiweißstoffe einleitet. Die mRNA selbst wird nach wenigen Stunden wieder vollständig abgebaut, was vorteilhaft für die Sicherheit dieser Impfstoffe ist.
Damit die mRNA nicht schon auf dem Weg zur Zelle von den Enzymen des Körpers abgebaut wird, muss man sie entsprechend verpacken. Dies geschieht durch Nanopartikel, die aus einer Mischung aus Lipiden oder Polymeren bestehen können. Die Lipide sind Fettmoleküle, die den Molekülen der Zellhülle ähneln und dabei helfen, die mRNA ins Zellinnere abzugeben. Lipide und Biopolymere werden danach vom Körper wieder abgebaut oder ausgeschieden.
In Zusammenarbeit mit der Gruppe von Prof. Peter Langguth, Universität Mainz, entwickelte das von Dr. Heinrich Haas geleitete Formulierungsteam der Firma Biontech zu diesem Zweck eine Reihe von Formulierungen, bei denen die Nanopartikel aus in der Pharmazie bereits bewährten Lipiden und Biopolymeren in unterschiedlichen Mischungen bestanden.
Um die Eigenschaften verschieden zusammengesetzter Nanopartikel miteinander zu vergleichen, unterzogen die Forscher sie unterschiedlichsten Untersuchungen. Neben Röntgen- und Mikroskopie-Analysen zählte dazu auch die Bestrahlung mit Neutronen am Instrument KWS-2.
Die Neutronen werden dabei im Inneren der Nanopartikel unter anderem an den Wasserstoffkernen gestreut und auf charakteristische Weise von ihrem Weg abgelenkt. Daraus lassen sich Rückschlüsse auf deren Verteilung ziehen. Tauscht man nun die Wasserstoffatome bestimmter Komponenten – zum Beispiel nur der Lipide – gegen schweren Wasserstoff aus, ändern sich zwar nicht die chemischen Eigenschaften oder die pharmazeutische Wirkung, jedoch die Streuung der Neutronen.
„Mit dieser Methode lassen sich Teile einer komplexen Mehrkomponenten-Morphologie selektiv hervorheben, ohne die physikalische Chemie der Probe zu verändern“, sagt Dr. Aurel Radulescu vom Jülich Centre for Neutron Science (JCNS). „Auf diese Weise können Struktureigenschaften dargestellt werden, die mit anderen Methoden nicht oder kaum sichtbar zu machen sind.“
Bei diesen Analysen interessierten sich die Forschungsteams dafür, wie effizient die Übertragung der mRNA in die Zelle, die Transfektion, bei den unterschiedlichen Formulierungen funktionierte. Auf diese Weise fanden die Forscher heraus, dass die höchste Transfektionsrate mit Nanopartikeln erhalten wurde, die sich durch eine bestimmte Art der inneren Ordnung auszeichnen.
„Immer wenn sich geordnete und weniger geordnete Bereiche im Inneren der Nanopartikel in charakteristischer Weise abwechselten, wurde eine hohe biologische Aktivität festgestellt. Hierbei könnte es sich um ein allgemeingültiges Konzept der Struktur-Aktivitätsbeziehung handeln, das unabhänging von den hier untersuchten Sytemen anwendbar ist“, hebt Dr. Heinrich Haas, Biontech, hevor. Eine ähnlich niedrige Ordnung wurde von den Forschungsteams zuvor auch schon mit Hilfe von Röntgenstrahlung in anderen Lipidnanopartikeln gefunden.
Um die gewünschten Struktureigenschaften zu erhalten, mussten Lipide und Biopolymere mit genau bestimmten Verfahren mit der mRNA zusammengebracht werden. Dabei konnten das Forschungsteam zeigen, dass sich die Nanopartikel zur Verpackung der mRNA in einem Schritt herstellen lassen, was im Vergleich zu einem ursprünglich ebenfalls erprobten Zwei-Schritt-Verfahren eine erhebliche Vereinfachung bedeutet.
So konnte am Ende eine vereinfachte Methode zur Herstellung von mRNA Nanopartikeln mit verbesserter Aktivität gefunden werden. „Solche Fragen der praktischen Herstellbarkeit stellen eine wichtige Voraussetzung für die Entwickelbarkeit pharmazeutischer Produkte dar“, sagt Langguth. In der Zukunft können solche Konzepte in der Entwicklung neuer mRNA-basierter Therapeutika mit berücksichtigt werden.
Dieser Artikel basiert auf einer Pressemitteilung der Technischen Universität München. Die Originalpublikation haben wir euch hier und hier verlinkt.
Bildquelle: Akshar Dave, Unsplash