Bei einer aggressiven Form des Pankreaskrebs ist der programmierte Zelltod auf bisher unbekannte Weise unterdrückt, sodass Krebszellen unkontrolliert wachsen. Forscher fanden nun einen Weg, wie sich die Resistenz der Krebszellen umgehen lässt.
Manche Krebsarten lassen sich besonders schwer behandeln, weil sie sich den verfügbaren Therapien entziehen. Das gilt vor allem für Pankreaskrebs – insbesondere aggressive Unterformen des sogenannten duktalen Adenokarzinoms der Bauchspeicheldrüse (PDAC). Etwa 19.000 Menschen in Deutschland erkranken jedes Jahr an Pankreaskrebs. Die häufigste Ursache einer Resistenz gegenüber therapeutischen Behandlungen besteht darin, dass der programmierte Zelltod der Krebszellen, die Apoptose, unterdrückt ist. Für eine zielgerichtete Behandlung sind deshalb neue Therapiestrategien notwendig.
„Wir haben nun einen möglichen Angriffspunkt entdeckt und einen Mechanismus identifiziert, wie sich die Resistenz von Krebszellen umgehen lässt. Auf diese Weise konnten wir einen neuen Weg für die Behandlung der besonders aggressiven Krebserkrankung aufzeigen“, sagt Privatdozent Dr. Matthias Wirth von der Medizinischen Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie am Charité Campus Benjamin Franklin.
Das Team an der Charité untersuchte – zusammen mit Wissenschaftlern anderer Forschungseinrichtungen in Deutschland, den USA und den Niederlanden – die Abläufe der Apoptose im Detail. Dabei stellten sie fest, dass ein wesentlicher Faktor, das Protein NOXA, bei besonders aggressiven Formen des Pankreaskarzinoms auf bisher unbekannte Weise unterdrückt wird. „Daher verfolgten wir den Ansatz, Kandidaten für mögliche Medikamente zu identifizieren, die das krebslimitierende Potenzial von NOXA freisetzen können. Durch ein unvoreingenommenes Screening zur systematischen Testung von Substanzen in genetisch veränderten Zelllinien konnten wir eine wirksame Substanz identifizieren“, erklärt Privatdozent Dr. Wirth. „Dabei handelte es sich um einen Hemmstoff des Transkriptionsfaktors RUNX1, der beim Pankreaskarzinom üblicherweise in großer Menge vorliegt und mit einer schlechten Prognose einhergeht.“
Die Forscher führten umfangreiche genomweite Analysen in speziellen Zellmodellen durch, um die Genaktivität zu bestimmen. Auf diese Weise konnten sie belegen, dass der Verlust von RUNX1 die Unterdrückung von NOXA aufhebt – das Protein RUNX1 also die Apoptose verhindert und so tumorfördernd wirkt.
Das Forschungsteam fand zudem heraus, dass die Aktivität des NOXA-Gens durch eine räumliche Interaktion mit einem weiter entferntem DNA-Abschnitt – einem sogenannten nicht-kodierenden regulatorischen Element – gesteuert wird, an dem der Transkriptionsfaktor RUNX1 binden kann. In einer bundesweiten Kooperation gelang es den Wissenschaftlern nachzuweisen, dass auch im Mausmodell sowie in Organoiden – also dreidimensionalen Zellkulturen, die von Krebspatienten stammen – die Funktion von RUNX1 blockiert und so die Apoptose in Tumorzellen ausgelöst werden kann. „Unsere Erkenntnisse richten den Fokus also auf wirksame RUNX1-Inhibitoren als eine mögliche neue Option zur Behandlung von Pankreaskrebs“, resümiert Privatdozent Dr. Wirth.
„Wir untersuchen nun, inwiefern sich der aufgeklärte Mechanismus auch auf andere Tumorarten übertragen lässt. Im nächsten Schritt werden wir weitere Substanzen testen – insbesondere solche, die bereits klinische Anwendung finden. Auf diese Weise hoffen wir, mögliche Kombinationstherapien aufzudecken, die später in klinischen Studien münden und die Therapieoptionen für Krebserkrankungen erweitern könnten.“
Dieser Artikel basiert auf einer Pressemitteilung der Charité – Universitätsmedizin Berlin. Die Originalpublikation findet ihr hier und im Text verlinkt.Bildquelle: Olav Ahrens Røtne, unsplash