Mainzer Forscher entwickelten einen neuen Wirkstoff zur Behandlung der akuten myeloischen Leukämie. Die Besonderheit: Er wirkt auch gegen resistente Leukämiezellen.
Für die Therapie einer schwer behandelbaren Form der akuten myeloischen Leukämie (AML) haben Wissenschaftler des Instituts für Toxikologie der Universitätsmedizin Mainz einen neuen Wirkstoff entwickelt. Der Vorteil der als „Marbotinib“ bezeichneten Substanz: Er bremst im Gegensatz zu bestehenden Medikamenten nicht nur das Wachstum primärer Leukämiezellen, sondern greift auch resistente Zellen effektiv an.
Ein weiterer Pluspunkt: Die Wirkmechanismen gesunder Zellen bleiben dabei unbeeinflusst. Das haben die Forschenden bei vorklinischen Untersuchungen im Tiermodell herausgefunden. Die in der Fachzeitschrift Cell Chemical Biology veröffentlichten Forschungsergebnisse könnten dazu beitragen, effektivere Therapien für Patienten mit AML zu entwickeln.
„Unser Ziel war es, einen Wirkstoff zu finden, der sich bei primären und resistenten Leukämiezellen als effektiv erweist, ohne dabei gesunde Zellen zu schädigen. Das ist uns gelungen, indem wir einen neuen Wirkstoff entwickelt haben, der mehrere Wirkprinzipien bekannter Medikamente in einem Molekül kombiniert: Marbotinib. Wir sind zuversichtlich, dass sich mit dieser Innovation Leukämieerkrankungen langfristig besser behandeln lassen. Als nächstes führen wir weitere Laboruntersuchungen durch, um zukünftig eine klinische Testung mit Marbotinib vorzubereiten“, erklärt Univ.-Prof. Dr. Oliver Krämer, Leiter der Abteilung Molekulare Toxikologie am Institut für Toxikologie der Universitätsmedizin Mainz.
Jährlich erkranken deutschlandweit bis zu 12.000 Menschen an Leukämie. Die zweithäufigste Form bei Erwachsenen ist die akute myeloische Leukämie (AML). Eine AML ist geprägt von einem Mangel an weißen und roten Blutkörperchen. Die Ursache liegt oft in einer Mutation des Proteins FLT3 in den Blutzellen. Dieses Protein unterstützt unreife Blutstammzellen dabei, sich zu reifen Zellen zu entwickeln. Die reifen Blutzellen können dann als Blutkörperchen ihren wichtigen Funktionen nachgehen. Ein mutiertes FLT3-Protein hat jedoch zur Folge, dass die Blutzellen unreif bleiben und sich nicht zu funktionstüchtigen Blutzellen weiterentwickeln. Ein weiteres Problem: Unreife Blutzellen teilen sich ungebremst und verdrängen gesunde Zellen. So entsteht zunehmend ein Mangel an funktionsfähigen Blutkörperchen. Ohne Behandlung führt die sich rasch entwickelnde AML in wenigen Wochen zum Tod.
Die bisher eingesetzten Leukämiemedikamente zielen darauf ab, das mutierte FLT3-Protein zu hemmen. Dadurch wachsen die bösartigen unreifen Blutzellen nicht weiter und sterben. Vor dem Zelltod können Blutkrebszellen jedoch das mutierte FLT3-Protein erneut verändern, und zwar so, dass sie unempfindlich gegen die Medikamente werden. Gegen diese dann resistenten Leukämiezellen gibt es zwar bereits Medikamente, allerdings kann deren Einsatz schwere Nebenwirkungen bei den Betroffenen verursachen.
Die von den Wissenschaftlern der Universitätsmedizin Mainz neu entwickelte Substanz Marbotinib weist eine spezielle Struktur auf. Diese ermöglicht dem Wirkstoff auf zwei unterschiedliche Arten an das mutierte FLT3-Protein zu binden und es so zu hemmen. Zusätzlich hemmt Marbotinib effektiv resistente Leukämiezellen mit doppelt-mutierten FLT3-Proteinen. In Zelltests gelang es, mit Marbotinib 90 bis 100 Prozent der primären und resistenten Leukämiezellen abzutöten. Die herausragende Innovationskraft dieses erfolgreichen Mainzer Forschungsprojekts zeigte sich aber gleichfalls bei den gesunden Zellen: Die doppelt hemmende Substanz wirkte so spezifisch, dass gesunde Zellen nicht geschädigt wurden.
Des Weiteren gelang es den Wissenschaftlern, mit einer extrem geringen Menge der von ihnen neu entwickelten Substanz eine höhere therapeutische Wirksamkeit als bei bisherigen Medikamenten zu erzielen. In der vorklinischen Testphase hat die Therapie mit Marbotinib im Tiermodell erreicht, dass die an Leukämie erkrankten Tiere deutlich länger überlebten. Wichtige Organe wie Leber, Lunge, Herz und Niere wurden dabei nicht beeinträchtigt.
Der Beitrag basiert auf einer Pressemitteilung der Universitätsmedizin Johannes Gutenberg-Universität Mainz. Die Originalpublikation findet ihr hier und im Text verlinkt.
Bildquelle: ANIRUDH, unsplash