Auch unsere Schädelknochen können Schall empfangen und weiterleiten. Forscher zeigten nun, dass Schwingungen im Knochen und im Innenohr miteinander gekoppelt sind. Diese Erkenntnisse könnten für die Entwicklung neuer Hörgeräte entscheidend sein.
Unser Hörsinn entsteht ausschließlich im Innenohr. Wenn sich Schallwellen in der Luft ausbreiten und unseren Gehörgang erreichen, regen sie je nach Frequenz, also Tonhöhe, unterschiedliche Bereiche auf der Basilarmembran im Innenohr zur Schwingung an. Diese mikroskopischen Vibrationen der Membran nehmen wir als Ton wahr. Das Innenohr ist jedoch von einem Kochen umgeben, der ebenfalls in Schwingung versetzt werden kann. Mithilfe von Berechnungen zur Bewegung von Flüssigkeiten haben die Forscher jetzt herausgefunden, dass die Schwingungen des Knochens und der Basilarmembran miteinander gekoppelt sind, sie können sich also gegenseitig zur Schwingung anregen. Dies führt zu faszinierenden Phänomenen, die mit dem neuen Modell jetzt verstanden werden können: So können zwei gleichzeitig im Innenohr ankommende Töne mit leicht unterschiedlichen Frequenzen einen Überlapp haben und dieselben Bereiche auf der Basilarmembran anregen. Durch eine Nichtlinearität der Membran entstehen im Innenohr Kombinationstöne, sogenannte otoakustische Emissionen. Wie genau diese Töne das Innenohr verlassen und wie sich deren Ausbreitung innerhalb des Ohrs gestaltet ist, ist aktuell Gegenstand wissenschaftlicher Debatte. „Wir haben gezeigt, dass die Kombinationstöne das Innenohr in Form einer schnellen Welle entlang der Knochenoberfläche verlassen können, und nicht, wie früher angenommen, mit Hilfe einer Basilarwelle“, erklärt Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung. In dem neuen Modell sind die Bewegung der Basilarmembran und des Knochens (rote Linien) miteinander gekoppelt. Sie können sich daher gegenseitig zu Schwingungen anregen. (Die kleine graue Scheibe symbolisiert das Trommelfell und die schwarze Linie davor die Gehörknöchelchen). © Tchumatchenko und Reichenbach
Außerdem belegt das Modell, dass die Wanderwellen entlang der Basilarmembran genauso durch die Vibrationen des Innenohrknochens entstehen können wie durch die Schwingungen der Luft im Ohrkanal. „Dies erklärt beispielsweise, warum wir eine Stimulation des Knochens genauso hören können wie Schallwellen in der Luft“, sagt Tobias Reichenbach vom Imperial College London. Mit diesen Ergebnissen können die Forscher das komplexe Zusammenspiel zwischen der Dynamik von Flüssigkeiten und der Mechanik des Knochens innerhalb des Innenohrs besser verstehen. Damit könnten in Zukunft verbesserte klinische und kommerzielle Anwendungen der Knochenleitung entwickelt werden, wie zum Beispiel neuartige Kombinationen von Brillen und Kopfhörer. Originalpublikation: A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission Tatjana Tchumatchenko et al.; Nature Communications, doi:10.1038/ncomms5160; 2014