Forscher fanden nun heraus, dass Ausdauersport nicht nur den Zustand von Muskeln verändert, sondern auch die Nervenverbindung zu den Muskelfasern verbessert. Den gleichen Effekt konnten sie durch eine Erhöhung der Proteinkonzentration von PGC1α im Muskel erzielen.
Es ist Frühling – Startschuss für alle Jogger. Dass man mit einem regelmäßigen Lauf durch den Wald seine Muskeln fit macht, ist ein bekannter Effekt. Verantwortlich dafür ist das Protein PGC1α, das eine zentrale Rolle bei der Anpassung der Muskeln an die Trainingssituation spielt. Das Forschungsteam von Prof. Christoph Handschin vom Biozentrum der Universität Basel hat nun entdeckt, dass ein solches Ausdauertraining nicht nur den Zustand der Muskeln, sondern auch, von Muskeln gesteuert, den der vorgeschalteten synaptischen Nervenverbindungen beeinflusst.
Wie verändert sich der Muskel bei Muskeltraining oder Muskelerkrankungen? Dieser Frage geht das Forschungsteam von Christoph Handschin seit einigen Jahren nach. In der Vergangenheit konnten sie bereits zeigen, dass das Protein PGC1α eine zentrale Rolle bei der Anpassung der Muskeln spielt, indem es diejenigen Gene reguliert, die den Muskel dazu bringen, sich an entsprechende Anforderungen anzupassen. Dabei liegt PGC1α in geringer Konzentration vor, wenn Muskeln inaktiv oder krank sind. Wird der Muskel hingegen stark beansprucht, steigt die PGC1α-Konzentration. Durch die künstliche Erhöhung des PGC1α-Spiegels lässt sich zudem ein Muskelaufbau bewirken.
Nun konnten die Forscher zeigen, dass sich durch eine Erhöhung des PGC1α-Spiegels im Muskel auch die vorgeschaltete synaptische Nervenverbindung zum Muskel verbessert. Dabei gibt der Muskel bei Aktivität Rückmeldung an die Nervenverbindung. Die Folge: Der Gesundheitszustand der Synapse verbessert sich und ihre Informationsleitung passt sich den Ansprüchen des Muskels an. Diesen Einfluss des Muskels auf die synaptische Verbindung kannte man bislang lediglich in der embryonalen Entwicklung. „Dass bei Erwachsenen mit voll ausgebildetem Nerven- und Muskelsystem durch eine Erhöhung der PGC1α-Konzentration im Muskel nicht nur die Muskeln verändert, sondern auch eine Verbesserung des gesamten Nerven- und Muskelsystem erzielt wird, war völlig unerwartet und hat uns positiv überrascht“, sagt Handschin. „Unser Ziel ist es jetzt, das genaue Signal zu identifizieren, dass zu dieser Stabilisierung der synaptischen Verbindung führt, um dieses Signal therapeutisch bei Muskelkrankheiten auszunutzen.“ Neuromuskuläre Synapse: Das Motoneuron (rot) ist mit der synaptischen Endplatte auf der Muskelzelle (grün) verbunden. © Universität Basel, Biozentrum
Eine direkte therapeutische Anwendung der Forschungsergebnisse bei Krankheiten wie Muskelschwund oder Amyotrophe Lateralsklerose (ALS) ist für Christoph Handschin bereits jetzt denkbar. „Bei Patienten, die aufgrund ihrer Krankheit ihre Muskeln aus eigener Kraft nicht mehr bewegen können, kann eine Erhöhung des PGC1α-Spiegels Muskeln und Nerven soweit stärken, dass sich die Patienten wieder ausreichend bewegen können, um anschließend aus eigener Kraft Sport zu machen und diese Verbesserung weiter voranzutreiben“, erklärt er. Nach einer pharmakologischen Verbesserung des Gesundheitszustandes von Muskeln und Nerven könnte die Therapie so eigenständig durch Ausdauersport weitergeführt werden. Originalpublikation: Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α Anne-Sophie Arnold et al.; Nature Communications, doi: 10.1038/ncomms4569; 2014